πŸͺ΄ Knowledgebase

      • A3C
      • Activation Function
      • AlexNet
      • Alpha-Beta Pruning
      • AlphaGo
      • AlphaZero
      • Angular Softmax Loss
      • Argmax Function
      • Attention
      • Backpropagation
      • Batch Normalization
      • Bayes Theorem
      • Bidirectional Encoder Representations from Transformers (BERT)
      • Breadth First Search (BFS)
      • Clustering
      • Computer Vision
      • Contrastive Language-Image Pretraining (CLIP)
      • Contrastive Loss
      • ControlNet
      • Convolutional Layer
      • Convolutional Neural Network (CNN)
      • Cosine Similarity Loss
      • Cross-Entropy Loss
      • DALL-E
      • DBSCAN Clustering
      • DDPG
      • Depth First Search (DFS)
      • Diffusion Models
      • DQN
      • Embeddings
      • Euclidean Distance
      • Few-Shot Learning
      • Fully-Connected Layer
      • Gaussian Error Linear Unit (GELU)
      • Generalized End-to-End Loss (GE2E)
      • Generative Adversarial Networks (GAN)
      • Global Average Pooling (GAP)
      • GoogleNet
      • Gradient Descent
      • Hyperbolic Tangent Activation Function (tanh)
      • Hyperparameters
      • K-Means Clustering
      • Large Language Model (LLM)
      • Logistic Regression
      • Long Short-Term Memory (LSTM)
      • Markov Decision-Making Process
      • Mean Squared Error (MSE)
      • Mechanistic Interpretability
      • Monte Carlo Tree Search (MCTS)
      • Multilayer Perceptron (MLP)
      • Multiple Linear Regression
      • Natural Language Processing
      • Perceptron
      • Polysemanticity
      • Pooling Layer
      • PPO
      • Rectifier Linear Unit Activation Function (ReLU)
      • Recurrent Neural Networks (RNN)
      • Regressions
      • Reinforcement Learning (RL)
      • Residual Blocks
      • ResNet
      • Retrieval-Augmented Generation (RAG)
      • Self-Attention
      • Semantic Search
      • Sequence2Sequence Models
      • Sigmoid Activation Function
      • Sigmoid Neuron
      • Simple Linear Regression
      • Softmax Activation Function
      • Squeeze and Excitation Blocks (SE)
      • Superpositioning
      • Supervised Learning
      • Transfer Learning
      • Transformers
      • Triplet Loss
      • Unsupervised Learning
      • Vector
      • VGGNet
      • Vision Transformer
      • Zero-Shot Learning
          • 1.1 β€” Scarcity
          • 1.2 β€” Opportunity Cost & Production Possibilities Curve
          • 1.3 β€” Comparative Advantage and Gains from Trade
          • 1.4 β€” Demand
          • 1.5 β€” Supply
          • 1.6 β€” Market Equilibrium, Disequilibrium, and Changes in Equilibrium
          • Unit Review
          • 2.1 β€” Circular Flow Model and Gross Domestic Product (GDP)
          • 2.2 β€” Limitations of GDP
          • 2.3 β€” Unemployment
          • 2.4 β€” Price Indices and Inflation
          • 2.5 β€” Costs of Inflation
          • 2.6 β€” Real vs. Nominal GDP
          • 2.7 β€” Business Cycle
          • 3.1 β€” Aggregate Demand
          • 3.2 β€” The Multiplier Effect
          • 3.3 β€” Short-Run Aggregate Supply (SRAS)
          • 3.4 β€” Long-Run Aggregate Supply (LRAS)
          • 3.5 β€” Equilibrium in Aggregate Supply and Demand
          • 3.6 β€” Short-Run Changes in Aggregate Supply and Demand
          • 3.7 β€” Long-Run Self-Adjustment
          • 3.8 β€” Fiscal Policy
          • 3.9 β€” Automatic Stabilizers
          • 4.1 β€” Financial Assets
          • 4.2 β€” Nominal vs. Real Interest Rates
          • 4.3 β€” Definition, Measurement, and Functions of Money
          • 4.4 β€” Banking and the Expansion of the Money Supply
          • 4.5 β€” The Money Market
          • 4.6 β€” Monetary Policy
          • 4.7 β€” The Loanable Funds Market
          • 5.1 β€” Fiscal and Monetary Policy Actions in the Short Run
          • 5.2 β€” The Phillips Curve
          • 5.3 β€” Money Growth and Inflation
          • 5.4 β€” Government Deficits and the National Debt
          • 5.5 β€” Crowding Out
          • 5.6 β€” Economic Growth
          • 5.7 β€” Public Policy and Economic Growth
          • 1.1 β€” Scarcity
          • 1.2 β€” Resource Allocation and Economic Systems
          • 1.3 β€” Production Possibilities Curve
          • 1.4 β€” Comparative Advantage and Trade
          • 1.5 β€” Cost-Benefit Analysis
          • 1.6 β€” Marginal Analysis and Consumer Choice
          • Unit Review
          • 2.1 β€” Demand
          • 2.2 β€” Supply
          • 2.3 β€” Price Elasticity of Demand
          • 2.4 β€” Elasticity of Supply
          • 2.5 β€” Other Elasticities
          • 2.6 β€” Market Equilibrium and Consumer and Producer Surplus
          • 2.7 β€” Market Disequilibrium and Changes in Equilibrium
          • 2.8 β€” The Effects of Government Intervention in Markets
          • 2.9 β€” International Trade and Public Policy
          • 3.1 β€” The Production Function
          • 3.2 β€” Short-Run Production Costs
          • 3.3 β€” Long-Run Production Costs
          • 3.4 β€” Types of Profit
          • 3.5 β€” Profit Maximization
          • 3.6 β€” Short-Run and Long-Run Decision-Making
          • 3.7 β€” Perfect Competition
          • 4.1 β€” Imperfectly Competitive Markets
          • 4.2 β€” Monopoly
          • 4.3 β€” Price Discrimination
          • 4.4 β€” Monopolistic Competition
          • 4.5 β€” Oligopoly and Game Theory
          • 5.1 β€” Introduction to Factor Markets
          • 12.1 β€” Magnetic Fields
          • 13.1 β€” Reflection
          • 13.2 β€” Images Formed by Mirrors
          • 13.3 β€” Refraction
          • 13.4 β€” Images Formed by Lenses
          • 14.1 β€” Properties of Wave Pulses and Waves
          • 14.2 β€” Periodic Waves
          • 14.3 β€” Boundary Behaviour of Waves and Polarization
          • 14.4 β€” Electromagnetic Waves
          • 14.5 β€” The Doppler Effect
          • 14.6 β€” Wave Interference and Standing Waves
          • 14.7 β€” Diffraction
          • 14.8 β€” Double-Slit Interference and Diffraction Gratings
          • 14.9 β€” Thin-Film Interference
        • Essays, What Doesn't Work – Inside the Yale Admissions Office
        • Essays, What Works – Inside the Yale Admissions Office
        • Hack the College Essay
      • Aligning Superhuman AI with Human Behavior - Chess as a Model System (McIlroy-Young et al. 2020)
      • An Open-Source Gloss-Based Baseline for Spoken to Signed Language Translation (Moryossef et al. 2023)
      • Attention Is All You Need (Vaswani et al. 2017)
      • Detecting Individual Decision-Making Style - Exploring Behavioral Stylometry in Chess (McIlroy-Young et al. 2020)
      • Echo Tunnels - Polarized News Sharing Online Runs Narrow but Deep
      • How Constraints Affect Content - The Case of Twitter’s Switch from 140 to 280 Characters (GligoriΔ‡ et al. 2018)
      • ICL Markup - Structuring In-Context Learning using Soft-Token Tags (Brunet et al. 2023)
      • Implications of Model Indeterminacy for Explanations of Automated Decisions (Brunet et al. 2022)
      • Machine Translation between Spoken Languages and Signed LanguagesRepresented in SignWriting (Jiang et al. 2023)
      • Mimetic Models - Ethical Implications of AI that Acts Like You
      • Neural Machine Translation By Jointly Learning to Align and Translate (Bahdanau, et al. 2015)
      • Quantifying social organization and political polarization in online platforms (Waller & Anderson 2021)
      • signwriting-evaluation β€” Effective Sign Language Evaluation via SignWriting
      • ToonCrafter - Generative Cartoon Interpolation (Xing et al. 2024)
      • Barack Obama β€” A Promised Land
      • Barack Obama β€” Hamilton College
      • Benjamin Netanyahu β€” Lex Fridman Podcast
      • Bernie Sanders β€” Lex Fridman Podcast
      • Boris Sofman β€” Lex Fridman Podcast
      • Dario Amodei β€” Lex Fridman Podcast
      • Dario Amodei β€” On DeepSeek and Export Controls
      • Dario Amodei β€” The Urgency of Interpretability
      • Demis Hassabis β€” Lex Fridman Podcast
      • Donald Trump β€” Lex Fridman Podcast
      • How Chess Can Revolutionize Learning β€” Cody Pomeranz, TEDxYale
      • Ilya Sutskever β€” Lex Fridman Podcast
      • Jeff Bezos β€” Lex Fridman Podcast
      • Kevin Systrom β€” Lex Fridman Podcast
      • Mark Cuban β€” Lex Fridman Podcast
      • Mark Zuckerberg β€” Lex Fridman Podcast
      • Narendra Modi β€” Lex Fridman Podcast
      • Robert Playter β€” Lex Fridman Podcast
      • Shannon Curry β€” Lex Fridman Podcast
      • The Days Are Long but the Decades Are Short β€” Sam Altman
      • Vivek Ramaswamy β€” Lex Fridman Podcast
      • Reading List β€” April 2025
      • Reflecting on Scrapyard β€” What We Did in Austin TX and 60+ Cities around the World
      • Another Week at K-Scale Labs
      • University Comparison
      • Air Travel
      • Reading List β€” January 2025
      • Ideas
      • Reading List β€” December 2024
      • Daily Transit
      • Short Talk with Tom Preston-Werner
      • Motivation
    Home

    ❯

    Papers

    ❯

    Implications of Model Indeterminacy for Explanations of Automated Decisions (Brunet et al. 2022)

    Implications of Model Indeterminacy for Explanations of Automated Decisions (Brunet et al. 2022)


    Graph View

    Created with Quartz v4.4.0 Β© 2025

    • Website
    • GitHub
    • Linkedin